Transmembrane and Ubiquitin-Like Domain-Containing Protein 1 (Tmub1/HOPS) Facilitates Surface Expression of GluR2-Containing AMPA Receptors
نویسندگان
چکیده
Some ubiquitin-like (UBL) domain-containing proteins are known to play roles in receptor trafficking. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) undergo constitutive cycling between the intracellular compartment and the cell surface in the central nervous system. However, the function of UBL domain-containing proteins in the recycling of the AMPARs to the synaptic surface has not yet been reported.Here, we report that the Transmembrane and ubiquitin-like domain-containing 1 (Tmub1) protein, formerly known as the Hepatocyte Odd Protein Shuttling (HOPS) protein, which is abundantly expressed in the brain and which exists in a synaptosomal membrane fraction, facilitates the recycling of the AMPAR subunit GluR2 to the cell surface. Neurons transfected with Tmub1/HOPS-RNAi plasmids showed a significant reduction in the AMPAR current as compared to their control neurons. Consistently, the synaptic surface expression of GluR2, but not of GluR1, was significantly decreased in the neurons transfected with the Tmub1/HOPS-RNAi and increased in the neurons overexpressing EGFP-Tmub1/HOPS. The altered surface expression of GluR2 was speculated to be due to the altered surface-recycling of the internalized GluR2 in our recycling assay. Eventually, we found that GluR2 and glutamate receptor interacting protein (GRIP) were coimmunoprecipitated by the anti-Tmub1/HOPS antibody from the mouse brain. Taken together, these observations show that the Tmub1/HOPS plays a role in regulating basal synaptic transmission; it contributes to maintain the synaptic surface number of the GluR2-containing AMPARs by facilitating the recycling of GluR2 to the plasma membrane.
منابع مشابه
Transmembrane and Ubiquitin-Like Domain Containing 1 (Tmub1) Regulates Locomotor Activity and Wakefulness in Mice and Interacts with CAMLG
Tmub1 (C7orf21/HOPS) encodes a protein containing a ubiquitin-like domain. Tmub1 is highly expressed in the nervous system. To study its physiological function, we generated mice with Tmub1 deleted by homologous recombination. The knockout mice were grossly normal and viable. In a comprehensive behavioral testing battery, the only knockout phenotype displayed was a strong increase in home cage ...
متن کاملMicroarray analysis reveals Tmub1 as a cell cycle-associated protein in rat hepatocytes
Transmembrane and ubiquitin-like domain containing protein 1 (Tmub1), formerly known as hepatocyte odd protein shuttling (HOPS) has been recognized as a ubiquitously expressed shuttling protein that moves between the nucleus and cytoplasm in hepatocytes. Tmub1 is involved in liver regeneration and functions as a bridging protein in tumor cell proliferation. To investigate the transcriptional pr...
متن کاملIL-6 induction of hepatocyte proliferation through the Tmub1-regulated gene pathway.
The expression of transmembrane and ubiquitin-like domain containing 1 (Tmub1) is upregulated during liver regeneration, however, the function and underlying molecular mechanisms responsible for Tmub1 action remain to be determined. This study utilized BRL-3A rat liver cells for Tmub1 shRNA lentivirus infection and IL-6 stimulation. Semi-quantitative RT-PCR and western blot analysis were used t...
متن کاملCritical postsynaptic density 95/disc large/zonula occludens-1 interactions by glutamate receptor 1 (GluR1) and GluR2 required at different subcellular sites.
Interactions between AMPA receptor subunits and proteins containing postsynaptic density 95/disc large/zonula occludens-1 (PDZ) domains have been shown to play critical roles in the proper trafficking of receptors to excitatory synapses. Synaptic accumulation of AMPA receptors containing the glutamate receptor 1 (GluR1) subunit can be driven by calcium/calmodulin-dependent protein kinase II act...
متن کاملCalcium-Permeable AMPA Receptor Plasticity Is Mediated by Subunit-Specific Interactions with PICK1 and NSF
A recently described form of synaptic plasticity results in dynamic changes in the calcium permeability of synaptic AMPA receptors. Since the AMPA receptor GluR2 subunit confers calcium permeability, this plasticity is thought to occur through the dynamic exchange of synaptic GluR2-lacking and GluR2-containing receptors. To investigate the molecular mechanisms underlying this calcium-permeable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008